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A GAS-KINETIC SCHEME FOR REACTIVE FLOWS ∗

YONGSHENG LIAN † AND KUN XU ‡

Abstract. In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to
chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation
by assigning a new internal degree of freedom to the particle distribution function. The new variable can be
also used to describe fluid trajectory for the nonreactive flows. Due to the kinetic governing equation, the
current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate
the accuracy and robustness of the current kinetic method.
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1. Introduction. There are mainly two numerical approaches to the solution of the compressible Euler
equations, namely, the Godunov and the Boltzmann schemes. Broadly speaking, the Godunov scheme is
based on the Riemann solution and characteristics play an important role in the description of the gas
evolution. However, the Boltzmann scheme uses the microscopic particle distribution function as the basis
in the construction of the flux function and the Euler solution is considered as a limiting case when the
particle collision time goes to zero. The Godunov and the Boltzmann schemes are based on two different
physical interpretations of flow motion. Due to the possible implementation of nonequilibrium gas property
in the kinetic scheme, both the robustness and accuracy of the scheme can be maintained [10].

In this paper, we extend the gas-kinetic BGK scheme for the nonreactive compressible Euler equations
to the reactive flows. In order to implement the mass fraction into the kinetic formulation, one new internal
degree of freedom z is implemented in the gas distribution function. For nonreactive flows, this function can
be also used for the tracking of fluid trajectory. In the reactive flow calculations, we are only accounting for
two species, which are the unburnt and burnt gases. The unburnt gas is converted to burnt gas via a simple
irreversible reaction process. As a special application, the new scheme is used in the study of detonation
waves in both 1-D and 2-D cases.

The inviscid reacting compressible Euler equations in 1-D case are


ρt + (ρU)x = 0,
(ρU)t + (ρU2 + p)x = 0,
(ρZ)t + (ρZU)x = −ρK(T )Z,
(ρε)t + (ρεU + pU)x = q0ρK(T )Z,

(1.1)

where ρ is the density, U the velocity, p the pressure, Z the mass fraction of unburnt gas, and q0 is the
amount of heat released per unit mass by reaction. The total energy density is ρε = 1

2ρU
2 + ρe, where ρe is

the internal energy. We assume that both unburnt and burnt gases have the same γ. The equation of state
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can be expressed as p = ρTR/m, where R is the gas constant and m is the molecular mass. K(T ) is the
chemical reactive rate, which is a function of temperature. The specific form of K(T ) will be given in the
numerical section.

Many researchers have been working on the numerical solution of equations (1.1). A partial list of
references includes Colella et.al. [2], Lindstrom [6], Engquist and Sjogreen [3], and Jeltsch and Klingenstein
[4]. Mostly, a splitting scheme is used to solve the above equations and the flow variables inside each cell are
updated through

dWj

dt
=

1
∆x

(Fj−1/2(t)− Fj+1/2(t)) + S(Wj),

where Wj = (ρ, ρU, ρZ, ρε)T
j is the cell-averaged conservative variables, S = (0, 0,−ρK(T )Z, q0ρK(T )Z)T

j is
the source term, and the flux function Fj+1/2 is obtained by solving Eq.(1.1) without considering the source
term. In this paper, a gas-kinetic model and the corresponding kinetic scheme for the evaluation of the flux
function Fj+1/2 of the homogeneous Euler equations will be presented, and the source term S(Wj) in the
above equation is treated implicitly for the update of flow variables Wj inside each cell.

2. A Gas-Kinetic Model. A gas-kinetic BGK model for Eq.(1.1) without the source terms can be
constructed as the following equation,

ft + ufx =
g − f
τ

,(2.1)

where f is the gas-distribution function, u the particle velocity, and Q(f, f) = (g−f)/τ the particle collision
term [1]. The equilibrium state g has the form,

g = ρ

(
λ

π

)K+2
2

e−λ((u−U)2+(z−Z)2+ξ2),

where K is the number of dimensions of the internal variable ξ and is related to γ,

K = (3− γ)/(γ − 1),

and ξ2 = ξ21 + ξ22 + ...+ ξ2K . The term λ is a function of the gas temperature T with the relation λ = m/2KT
and k is the Boltzmann constant.

The connection between the distribution function f and the macroscopic flow variables is

(ρ, ρU, ρZ, ρε)T =
∫
ψαfdudzdξ,

where dξ = dξ1dξ2...dξK and

ψα = (1, u, z,
1
2
(u2 + ξ2))T

are the moments for density ρ, momentum ρU , mass fraction ρZ, and total energy ρε. The fluxes for the
corresponding macroscopic variables are

(Fρ, FρU , FρZ , Fρε)T =
∫
uψαfdudzdξ.

For the homogeneous flow equations (1.1) without the source terms, the compatibility condition of the
collision term in the Boltzmann equation is

∫
Q(f, f)ψαdudzdξ =




0
0
0
0


.(2.2)
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For the equilibrium flow with f = g, the homogeneous Euler equations with the inclusion of mass fraction
can be recovered by taking the moments of ψα to Eq.(2.1),

∫



1
u

z
1
2 (u2 + ξ2)


(gt + ugx)dudzdξ = 0,

and the resulting equations become


ρ

ρU

ρZ
1
2ρ(U

2 + K+1
2λ )




t

+




ρU

ρU2 + ρ
2λ

ρZU
1
2ρ(U

3 + (K+3)U
2λ )




x

= 0.

So, the corresponding pressure is p = ρ/2λ and the internal energy density ρe goes to

ρe =
(K + 1)ρ

4λ
.

To the first order of τ , the Chapman-Enskog expansion gives

f = g − τ(gt + ugx),

and the BGK model automatically reduces to the Navier-Stokes equations,


ρ

ρU

ρZ
1
2ρ(U

2 + K+1
2λ )




t

+




ρU

ρU2 + ρ
2λ

ρUZ
1
2ρ(U

3 + (K+3)U
2λ )




x

= τ




0
2K

K+1
ρ
2λUx

ρ
2λZx

K+3
4

ρ
2λ ( 1

λ)x + 2K
K+1

ρ
2λUUx




x

,(2.3)

where the dynamic viscous coefficient is η = τp. In the 2-D cases, similar viscous governing equations can be
derived from the BGK model [10]. As a result, for the chemical reactive flows, the real governing equations
solved by the kinetic BGK scheme are the reactive Navier-Stokes equations instead of inviscid equations
(1.1). This is basically one of the direct reason for the robustness of kinetic BGK scheme.
Remark: in the above equations, the function Z has no dynamical effect on the gas evolution, it only provides
additional information about the flow property, which can be the mass fraction for the reactive flow, level
set function for the interface tracking, color function for the fluid trajectory capturing, and the pollution
concentration for certain gas species.

3. Gas-Kinetic Flow Solver . In order to evaluate the numerical fluxes across a cell interface xj+1/2,
we need to get the gas distribution function there. The general solution of f at the cell interface xj+1/2 and
time t is

f(xj+1/2, t, u, z, ξ) =
1
τ

∫ t

0

g(x′, t′, u, z, ξ)e−(t−t′)/τdt′ + e−t/τf0(xj+1/2 − ut),(3.1)

where x′ = xj+1/2 − u(t − t′) is the trajectory of the particle motion and f0 is the initial gas distribution
function f at the beginning of each time step (t = 0). Two unknowns, g and f0 in Eq.(3.1), have to be
addressed in the above equation in order to obtain the explicit form of f .

Generally, the distributions of f0 and g around the cell interface xj+1/2 and time t = 0 are obtained
using the Taylor expansion of the Maxwellian distribution function, for example

f0 =

{
gl

(
1 + al(x− xj+1/2)

)
, x ≤ xj+1/2

gr
(
1 + ar(x− xj+1/2)

)
, x ≥ xj+1/2

(3.2)
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and

g = g0
(
1 + (1−H[x− xj+1/2])āl(x − xj+1/2) + H[x− xj+1/2]ār(x− xj+1/2) + Āt

)
,(3.3)

where gl, gr and g0 are local Maxwellians located at the left, right and middle of a cell interface. The
parameters al, ar, āl, ār have the following form

a = a1 + a2u+ a3z + a4(u2 + ξ2),

and all parameters (a1, a2, a3, a4) can be found from the slopes of the corresponding macroscopic variables.
H[x] is the Heaviside function defined as

H [x] =
{

0, x < 0
1, x ≥ 0

.

The reason and detailed formulation in the determination of f0 is presented in [12, 10]. The only difference
here is that we need to use the macroscopic distribution ρZ in the determination of the a3z term.

After f0 is obtained, the equilibrium state g0 at a cell interface

g0 = ρ0(
λ0

π
)

K+2
2

e−λ0((u−U0)2+(z−Z0)2+ξ2),

is determined as follows. Taking the limit of t → 0 in Eq.(3.1) and substituting its solution into Eq.(2.2),
the compatibility constraint at (x = xj+1/2, t = 0) gives

W0 =
∫
g0ψαdudzdξ =

∫
u>0

∫
glψαdudzdξ +

∫
u<0

∫
grψαdudzdξ.

Similarly the corresponding slopes of g in Eq.(3.3) can be obtained from the macroscopic slopes between the
cell averaged flow quantities Wj and Wj+1 and the above value W0 at the cell interface [12].

After substituting Eq.(3.2) and Eq.(3.3) into Eq.(3.1), the final gas distribution function at a cell interface
is

f(xj+1/2, t, u, z, ξ) = (1− e−t/τ )g0 +
(
τ(−1 + e−t/τ ) + te−t/τ

) (
ālH[u] + ār(1−H[u])

)
ug0

+τ(t/τ − 1 + e−t/τ )Āg0(3.4)

+e−t/τ
(
(1− utal)H[u]gl + (1− utar)(1−H[u])gr

)
.

The only unknown in the above equation is Ā term, which is determined by implementing the compatibility
condition over the whole time step ∆t at the location xj+1/2,∫ ∆t

0

∫
(g(xj+1/2, t, u, z, ξ)− f(xj+1/2, t, u, z, ξ))dtdudzdξ = 0.

There is no iteration involved in the determination of Ā from the above equation [12]. After f is obtained,
the time-dependent numerical fluxes in the x-direction across the cell interface can be computed as


Fρ

FρU

FρZ

Fρε




j+1/2

=
∫
u




1
u

z
1
2 (u2 + ξ2)


f(xj+1/2, t, u, z, ξ)dudzdξ.(3.5)

By integrating the above equation over the whole time step ∆t, we get the totalW = (ρ, ρU, ρZ, ρε) transport.
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4. Numerical Examples. In the numerical examples reported in this section, the van Leer limiter is
used for the reconstruction of conservative variablesW at the beginning of each time step. Unless specifically
stated, the gas constant γ is equal to 1.4. The first three test cases are about the nonreactive flow and the
mass fraction is used as an interface tracer for the fluid evolution; the following two test cases are about 1-D
and 2-D detonation wave calculations.
Case(1): Diffusion of mass fraction function

As analyzed in section 2, the real governing equation obtained from the kinetic BGK model for the
function ρZ is the advection diffusion equation,

(ρZ)t + (ρUZ)x = τ(
ρ

2λ
Zx)x.

In order to test the above governing equation, we set two uniform initial flow conditions with

(ρ = 1, p = 1, U = 0), and (ρ = 1, p = 1, U = 0.5).(4.1)

The computational domain consists of 200 grid points with cell size ∆x = 1.0. The function Z is initially
assigned with the value

Z =
{−1, x < 100,

1. x ≥ 100.

Two fixed collision times τ = 0.03 and τ = 0.015 are used in the computations, which correspond to
viscosity coefficients ν = 0.03 and ν = 0.015 respectively. At the output time t = 100, the numerical and
exact solutions for both cases are shown in Fig.(5.1). The results confirm that the BGK scheme does solve
the advection diffusion equation for the mass fraction function Z.
Case(2) Fluid trajectory in the shock tube case [9]

The forward-facing case is carried out on a uniform mesh of 120× 40 cells and ∆x = ∆y = 1/40. We
choose the color function Z at the inlet x = 0 with the following boundary conditions

Z =




1.0 for 0 ≤ y < 3
40 ,

−1.0 for 3
40 ≤ y < 21

40 ,

1.0 for 21
40 ≤ y < 33

40 ,

−1.0 for 33
40 ≤ y < 1.

The computed density and pressure distributions are presented in Fig.(5.2). In the same figure, the contours
of function Z are added, from which the interfaces between different “colored” fluid and the fluid trajectories
can be clearly observed. For example, the fluid particles change direction after passing through the oblique
shock.
Case(3) Rayleigh-Taylor instability [7, 5]

This computation is performed on a rectangular domain of x ∈ [0, 1] and y ∈ [0, 2] with reflecting
boundary conditions on the lower and upper sides of the domain and periodic ones in the horizontal direction.
The gravity is directed downward with dimensionless gravitational constant G = 0.5.

The densities next to the initial fluid interface at y = 1 are ρ1 = 0.5 and ρ2 = 1.0 with the ratio
ρ2/ρ1 = 2 : 1, and the functions Z are 1.0 below the interface and −1.0 above that. The value of the pressure
at the fluid interface (y = 1) is 1/1.4, and isothermal conditions are used to determine flow distributions in
both the upper and lower parts. The initial density perturbation at the interface is added with the form
δρ = 0.05(1 − cos(2πx)). Since the heavy fluid is located on top of the light fluid, it stays in an unstable
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situation when the system is subjected to gravity. The computed contours of function Z with the values
Z = [−0.5, 0.0, 0.5] at output time t = 10.0 on three different mesh sizes (∆x = ∆y = 1/64, 1/128, 1/192) are
shown in Fig.(5.3). Since the collision time τ = 4×10−4 is fixed in all these three cases, the physical viscosity
coefficient τp/ρ keeps the same value. Therefore, even with the mesh refinement the simulation results are
basically identical. If the Riemann solution of the inviscid Euler equations is used in the flux evaluation
Fj+1/2, the numerical results usually do not converge with the mesh-refinement [7]. The nonconvergence
of the numerical results is more serious for the detonative reactive flows using the exact Godunov method
[8, 6].
Case(4) 1-D denotation wave

In this case, we are going to study the formation of the ZND wave for the following reaction kinetics,

K(T ) =
{
K0, T ≥ T0,

0, T < T0,
(4.2)

where T0 is the ignition temperature and K0 the reaction rate. This specific case is taken from [4]. The
initial data are piece-wise constant, which defines the Chapman-Jouget detonation wave:

(ρl = 1.9690× 10−3 g

cm3
, Ul = 4.8057× 104 cm

sec
, pl = 7.9434× 106 g

cmsec2
, Z = 0),

(ρr = 1.2010× 10−3 g
cm3 , Ul = 0.0, pl = 0.8321× 106 g

cmsec2 , Z = 1.0).

In the calculation, the gas constant R is equal to 8.3143× 107cm2g/sec2Kmol, the molecular weight m =
36g/mol, the ignition temperature T0 = 500oK, the reaction rate K0 = 0.582458 × 1010/s, and the heat
release q0 = 6.9283 × 109cm2/sec2. The spatial step size ∆x used in each case is varied according to
∆x = αR0, where R0 = 5.347× 10−6cm and the parameter α takes the values 0.01, 0.1, 1 in the three cases.
The results at subsequent times with different α are shown in Fig.(5.4)-(5.6). From these figures, we find
that a detonation wave is a strong shock wave propagating into a reactant, followed by a thin zone of reaction
which supports the shock.
Case(5) 2-D denotation wave [6]

As illustrated in [6], with the mesh refinement the reactive Euler solvers can generate unphysical solutions
in the complicated oscillating detonation waves. The spurious solution appears even using the exact Godunov
method [8].

The initial condition for the 2D denotation simulation is an exact traveling solution of the ZND wave.
The reaction rate K(T ) has the following Arrhenius formulation,

K(T ) = K0T
αe−E/T .(4.3)

The parameters used are q0 = 50, E = 50, γ = 1.2 and α = 0. The reaction rate K0 is set to be 104.
The initial data is a one-dimensional ZND profile in the x-direction. The ZND wave connects the left state
ρl = 1.731379, Ul = 3.015113 Vl = 0, ρlεl = 130.4736, Zl = 0 by a Chapman-Jouget detonation with the
right state ρr = 1, Ur = 0, VR = 0, ρrεr = 15, Zr = 1. The computational domain is 0.6 × 1.0, and the cell
size used is ∆x = ∆y = 1/400. A periodic perturbation is imposed in the y-direction of the initial ZND
profile, where the initial data W (x, y, 0) is set to WZND(x+ ∆xNINT(0.05

∆x cos(4πy))), where NINT(z) is the
nearest integer close to z. The simulation results around the ZND wave front for the subsequent times from
5/64, 6/64, ..., 16/65 are shown in the Fig.(5.7). From this figure, we can clearly see the oscillating profile of
the ZND wave front and the “explosion within explosion ” phenomena due to the collision of triple points.

For the Godunov scheme, due to the inadequate dissipation in the gas evolution stage, the shock insta-
bility and carbuncle phenomena are intrinsically rooted [11], and the robustness of the Godunov scheme can
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hardly be achieved for the complicated flow system in the high resolution calculations, such as the chemical
reactive and MHD equations. A detail analysis of the dissipative mechanism in the Godunov method is
presented in [11]. However, for the gas-kinetic BGK scheme, we are basically solving the viscous governing
equations even for the inviscid target equations. So, the robustness is well maintained. This kind of approach
is physically founded, because we are obtaining the numerical solutions on the discretized space and time,
where the spatial and temporal resolution is limited by the cell size and time step. The subcell smearing is
equivalent to the intrinsic dissipation. In order to remove the unphysical solutions in Riemann solver based
methods, the reactive Navier-Stokes equations are solved directly in [6]. However, the evaluation of the vis-
cous terms requires substantial computation resources. In this aspect, the gas-kinetic scheme of the current
paper is efficient since the viscous and heat conduction terms have been included in the gas distribution
function (3.5) already.

5. Conclusion. In this paper, we have extended the BGK scheme to the chemical reactive flow with
the inclusion of one more internal degree of freedom in the gas distribution function to account for the mass
fraction. This mass function can be also used to track the fluid interfaces for the nonreactive flows. The
numerical results confirm the robustness, accuracy and efficiency of the BGK method.
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Fig. 5.1. Propagation of function Z with velocity U = 0 (top) and U = 0.5 (bottom). The collision times used are τ = 0.03

(left) and τ = 0.015 (right) respectively. The solid lines are exact solutions and the circles are numerical solutions.
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in these plots to show the fluid trajectory. The mesh size used here is 120 × 40.
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Fig. 5.5. Density, pressure, velocity and mass fraction Z plots at time steps 0, 2000, ...,10000 with α = 0.1.
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Fig. 5.6. Density, pressure, velocity and mass fraction Z plots at time steps 0, 2000, ..., 10000 with α = 1. Due to the

large cell size in this case, the peak values are reduced and the profiles get smeared in comparison with Fig.(5.4) and Fig.(5.5).

If α is continuously increasing, spurious solutions of one cell per time step will appear [2].
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Fig. 5.7. Density distribution of the propagating detonation front at time t = 5/64, 6/64, ...,16/64 (from left → right, top

→ bottom). The phenomena of “explosion within explosion” can be clearly observed at the leading shock front.
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